A set Ω in \mathbb{R}^d is called spectral if the space $L^2(\Omega)$ admits an orthogonal basis consisting of exponential functions. Which sets Ω are spectral? This question is known as "Fuglede's spectral set problem".

In the talk we will be focusing on the case of product domains, namely, when $\Omega = A \times B$. In this case, it is conjectured that Ω is spectral if and only if the factors A and B are both spectral. We will discuss some new results, joint with Nir Lev, supporting this conjecture, and their applications to the study of spectrality of convex polytopes.